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Abstract
Slow and superluminal group velocities can be observed in any material that
has large normal or anomalous dispersion. While this fact has been known for
more than a century, recent experiments have shown that the dispersion can be
very large without dramatically deforming a pulse. As a result, the significance
and nature of pulse velocity is being reevaluated. In this review, we discuss
some of the current techniques used for generating ultra-slow, superluminal,
and even stopped light. While ultra-slow and superluminal group velocities
have been observed in complicated systems, from an applications point of view
it is highly desirable to do have this done in a solid that can operate at room
temperature. We describe how coherent population oscillations can produce
ultra-slow and superluminal light under these conditions.
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1. Introduction

For over 100 years, the problem of how a wave travels through a dispersive material is one
that has been studied in great detail [1–5]. Recent interest in this problem has been sparked by
the discovery of systems that have high dispersion, yet allow a pulse to propagate relatively
undistorted. In addition, these new systems have relatively low loss so the pulse dynamics
are easy to observe. However, until now, all of the systems that have been developed to
generate slow or fast light are fairly complicated and difficult to implement. Specifically,
these experiments are done in ultra-cold or hot atomic vapours or in solids at liquid helium
temperatures. They also require precisely tuned and highly stable laser systems. For real-
world applications, such complicated systems are a liability. In this review, we explore better
ways to produce slow and fast light—methods that work in a room-temperature solid-state
material.

1.1. Phase and group velocity

It is believed that Lord Rayleigh was the first to note the difference between the phase and
group velocity [1]. The phase velocity of a monochromatic wave in a dispersive medium is
defined as the velocity of points of constant phase. If the complex electric field is given as

E(z, t) = E0ei(kz−ωt)

= E0eik(z− ω
k t), (1)

the points of constant phase will travel at a velocity

vp = ω

k
, (2)

where k is the wavenumber and ω is the angular frequency. This thought is frequently expressed
in terms of a refractive index n0, where vp = c/n0.

If the field is not monochromatic, another velocity associated with wave propagation
becomes relevant. This velocity, the group velocity, is defined as

vg = dω

dk
. (3)

In a vacuum, the group velocity is equal to the phase velocity (see figure 1) since all frequency
components travel at the same speed (c). However, in general the group velocity will be
different from the phase velocity. If the electromagnetic field interacts with the material at any
frequency the material becomes dispersive at all frequencies, and the group velocity no longer
exactly equals the phase velocity. In fact, near an optical resonance, the group velocity can be
negative (see figure 2). While usually identified with the velocity of a pulse, the group velocity
can be thought of as the speed of the propagating temporal interference pattern produced by
multiple spectral components. For a pulse with a central frequency ω0, the group index is
given as

ng(ω0) = c

vg
= c

dk

dω

= c
d(ωn(ω0)/c)

dω

= n(ω0) + ω0
dn(ω0)

dω
. (4)
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Figure 1. The dispersion diagram for electromagnetic waves travelling in a vacuum.
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Figure 2. A dispersion curve containing a material resonance indicating the values for the phase
and group velocity at a given frequency. The phase velocity is given by vp = ω0/k0. The group
velocity is the inverse of the slope of the dispersion curve at the frequency ω0.

1.2. Kramers–Kronig relations

While some of the systems developed to produce large group velocities are rather exotic, they
need not be. Rather, all that is necessary is to have a system where the refractive index changes
rapidly as a function of frequency. This is usually done in a material which is at or near a
resonance with the applied optical field. To see why this is so, we consider the Kramers–Kronig
relations

nr(ω) = 1 +
c

π
P

∫ ∞

0

α(s)

s2 − ω2
ds, (5a)

α(ω) = −4ω2

πc
P

∫ ∞

0

nr(s) − 1

s2 − ω2
ds, (5b)

which relate the real part of the refractive index to the absorption within the material. From a
simple analysis of these equations, one can show that a narrow dip in an absorption spectrum
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Figure 3. The absorption and refractive index are related through the Kramers–Kronig relations.
A narrow spectral hole will produce strong normal dispersion.

ωc ωp

Figure 4. To produce EIT, a strong control beam (ωp) is applied between levels |1〉 and |2〉. This
effectively splits level |2〉 so that a probe beam sees reduced absorption over a very narrow spectral
range.

will produce strong normal dispersion (dn/dω � 0), whereas a peak or gain will produce
anomalous dispersion (dn/dω � 0). We illustrate the former case in figure 3. Since the group
index of a pulse is given in equation (4) as ng = n0 + ω dn

dω
, if the dispersion is large, the group

index can also be large (either positive or negative).
Therefore, the key to producing a slow (or fast) light material is to find some physical

process which has a strong, but narrow spectral feature. Such a feature, by the Kramers–Kronig
relations, will produce the large dispersion necessary for slow or fast light.

1.3. Ultra-slow light

It has long been known that a rapid change in the refractive index near a material resonance leads
to a large value of the group index [2, 5, 6]. However, in these situations strong absorption
accompanies the low group velocity making the experimental observation of these effects
difficult although not altogether impossible. In the first experimental observation of slow and
fast light propagation in a resonant system [7], laser pulses propagated without appreciable
shape distortion, but experienced very strong resonant absorption (∼105 cm−1).

1.3.1. EIT techniques. To reduce absorption, most of the recent work on slow light
propagation has made use of the technique of electromagnetically induced transparency (EIT)
to render the material medium highly transparent (see figure 4) while still retaining the strong
dispersion required for the creation of slow light [8–11]. These spectral features can be so
narrow that pulses are considered to be ‘ultra-slow’. Using this technique, Kasapi et al [12]
observed a group velocity of vg = c/165 in a 10 cm Pb vapour cell.

Interest in this field really exploded when Hau et al [13] observed a group velocity of
17 m s−1 in a Bose–Einstein condensate (BEC). However, it has since been shown that ultra-
slow group velocities are possible in more traditional states of matter. Kash et al [14] also used
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an EIT technique to measure a group velocity of 90 m s−1 in a hot rubidium vapour. Using
similar techniques, Budker et al [15] have inferred group velocities as low as 8 m s−1.

In the first demonstration of ultra-slow light in a solid, Turukhin et al [16] have observed
a velocity of 45 m s−1 in a praseodymium doped Y2SiO5 crystal. They again used EIT
techniques, but in order to maintain ground state coherence, the sample had to be cooled to a
cryogenic temperature of 5 K.

A classical analogue of EIT in optical oscillators has been proposed recently [17]. It was
predicted that destructive interference of fields in classical coupled optical oscillators could
lead to a sharp spike in transmission on resonance. This effect is very similar in appearance
to the cancellation of absorption in EIT and it could lead to ultra-slow light propagation in
classical optical systems at room temperature.

1.3.2. Coherent population oscillations. More recently, we demonstrated ultra-slow light for
the first time in a room-temperature solid using coherent population oscillations (CPO) [18].
In the bulk of this review we will investigate this technique in detail.

1.3.3. Other techniques. Besides CPO, the only other demonstration of ultra-slow light
propagation in a room-temperature solid has been the work of Podivilov et al [19], who
slowed very long pulses to a group velocity of 0.025 cm s−1. However, they observed that, in
this system, the transmitted pulse experiences significant pulse distortion.

1.4. Stopped light

It has also been demonstrated that it is possible to stop or store a pulse of light and then
‘release’ it at a significantly later time [20–22]. Such devices could have applications in
optical memories and optical computing. A dynamically controlled photonic band gas is
one particularly promising technique developed by Bajcsy et al [22]. The key feature of
this technique consists of two counter-propagating lasers that are tuned to the control field
frequency in an EIT system to form periodic regions where a probe field will see reduced
absorption. With only one control field present, the pulse enters the material. The second
field is then applied which ‘traps’ the probe inside the photonic lattice. It can then be released
again by turning off one of the control fields. The intriguing part of this technique is that the
photonic component of the pulse never disappears; it is truly a case of stopped light.

1.5. Fast light

There has also been considerable experimental work in the production of fast light [23, 24].
Akulshin et al have observed a group velocity of −c/23 000 using electromagnetically induced
absorption [25]. More recently, Kim et al [26] used the same technique and observed a group
velocity of −c/14 400. Another technique is gain-assisted superluminal light propagation,
which was first proposed by Steinberg and Chiao [27]. In this technique, a probe pulse is
tuned between the gain lines produced by two pump beams. The probe sees less gain between
these lines, and correspondingly large anomalous dispersion. Later Wang et al demonstrated
a group velocity of −c/310 using this method [28]. More recently, Stenner et al [29] used
a slightly modified version of the gain-assisted superluminal light propagation technique to
produce pulse advancements that were nearly 11% of the width of the pulse (vg = −c/19.6).

Another form of fast light is superluminal barrier tunnelling. The possibility that a particle
may be able to tunnel through a barrier in a time independent of barrier width has been a point
of controversy for many years [30–33]. Recently, Steinberg et al [34] measured the tunnelling
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Figure 5. (a) A simplified version of the energy levels in ruby. Because of the rapid decay into
level c, we can model this system as the two-level atom shown in (b).

time of a single photon through a 1D photonic band gap material and found that the photon
appears on the far side of the barrier ∼1.5 fs earlier than had it been travelling in vacuum. In
addition, Spielman et al [35] found that the pulse propagation time through a photonic band
gap material is independent of the length of the material. These apparent violations of causality
were resolved by Winful [36, 37], who showed that for relatively long pulses, the field of the
transmitted pulse through a barrier can adiabatically follow the incident pulse with almost no
delay. However, if the pulse is too narrow, the output field cannot follow the input field and no
superluminal pulse advancement can be seen.

1.6. Coherent population oscillations

All of the techniques for producing both fast and slow light discussed in the last section
require complicated experimental setups and/or low temperatures. However, it is important in
developing applications that these large group indices can be produced in a room-temperature
solid. It is this feature which makes it attractive to use the ‘holes’ or ‘anti-holes’ that are formed
in homogeneously broadened absorption lines as a result of coherent population oscillations.

Spectral holes due to coherent population oscillations were first predicted in 1967 by
Schwartz and Tan [38] from the solution of the density matrix equations of motion, and they
have been described in greater detail by subsequent authors [39–41]. In 1983, Hillman et al
[42] observed such a spectral hole in ruby. In their experiment, they used an argon-ion laser
operating at 514.5 nm to pump population from the ground state to the broad 4F2 absorption
band. Population decays from this level within a few picoseconds to the metastable 2 Ā and Ē
levels and eventually returns to the ground level with a decay time T ′

1 of a few milliseconds. A
second probe beam (or amplitude modulation sidebands) will beat with the pump and cause the
electron population to oscillate between the ground and metastable level. Because the decay
time is so long, this oscillation will only occur if the beat frequency (δ) between the pump and
probe beams is small so that δT1 ∼ 1. When this condition is fulfilled, the pump wave can
efficiently scatter off the temporally modulated ground state population into the probe wave,
resulting in reduced absorption of the probe wave. The spectral hole created is centred at
the laser frequency and has a width of approximately the inverse of the population relaxation
time. Hillman et al [42] used modulation spectroscopy to observe this feature and measured
its width to be 37 Hz (HWHM).

To analyse the situation in ruby mathematically, we refer to the ground state as level a, the
4F2 absorption band as level b, and the levels 2 Ā and Ē as level c, as illustrated in figure 5(a).
Because of the rapid decay of level b, it is possible to reduce this system to a two-level system
shown in figure 5(b). The density matrix equations of motion for this system are given by [43]

ρ̇ba = −
(

iωba +
1

T2

)
ρba +

i

h̄
Vbaw, (6a)
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ẇ = −w − w(eq)

T1
− 2i

h̄
(Vbaρab − Vabρba) , (6b)

where w is the population inversion, T1 = 2T ′
1 is the ground state recovery time, T ′

1 is the
lifetime of level c, T2 is the dipole moment dephasing time,and w(eq) is the population inversion
of the material in thermal equilibrium. The distinction between T1 and T ′

1 has been discussed
by Sargent [39]. The interaction Hamiltonian in the rotating-wave approximation is given by
Vba = −µba(E1e−iω1t + E3e−iω3 t), where E1 and E3 are the pump and probe field amplitudes,
respectively, µba is the dipole matrix element, and ω3 = ω1 + δ. We seek a solution to the
density matrix equation that is correct to all orders in the amplitude of the strong pump field
and is correct to lowest order in the amplitude of the probe field. In this order of approximation
we represent the population inversion as

w(t) = w(0) + w(−δ)eiδt + w(δ)e−iδt , (7)

where w(0) and w(±δ) are given in [40] as

w(0) =
[
1 + (ω1 − ωba)

2 T 2
2

]
w(eq)

1 + (ω1 − ωba)
2 T 2

2 + �2T1T2
, (8a)

w(±δ) = γ

2T1

1 ∓ iδ/β

δ2 + β2
, (8b)

where we have defined

γ = 4T2|µab|2
h̄2

[
1 + (ω1 − ωba)

2 T 2
2

] (2E1 E3) , (9)

β = 1

T1
+

4T2|µab|2
h̄2

(
E2

1

) = 1

T1

(
1 + �2T1T2

)
, (10)

and the Rabi frequency

� ≡ 2|µab||E1|
h̄

(11)

to simplify notation. The response at the probe frequency can be represented as [40]

ρba(ω1 + δ) = µba

h̄

E3w
(0) + E1w

(δ)

ω1 − ωba + i/T2
. (12)

Note that the first term corresponds to the interaction of the probe wave with the static part
of the population difference (i.e. saturable absorption), whereas the second term represents
the scattering of the pump wave off the temporally modulated ground state population. This
contribution leads to decreased absorption at the probe frequency, that is, to a spectral hole in
the probe absorption profile. To demonstrate this effect, we simplify equation (12) by assuming
that ω1 = ωab, that T −1

2 is large compared to the Rabi frequency and to the beat frequency
δ ≡ ω3 − ω1, and that w(eq) = −1, to find

ρba(ω1 + δ) = iµba E3T2

h̄

(
1

1 + �2T1T2
− �2 T2

T1

1 + iδ/β

δ2 + β2

)
. (13)

We can see from the above expressions that β is the linewidth of the spectral hole. Therefore,
the amplitudes of the population oscillations are appreciable only for δ � 1/T1.

We can determine the linear susceptibility through use of equation (13) by means of the
relation χ(δ) = Nµbaρba(ω3)/E3 and, consequently, find expressions for the absorption and
the refractive index experienced by the probe field as

α(δ) = α0

1 + I0

[
1 − I0 (1 + I0)

(T1δ)
2 + (1 + I0)

2

]
, (14a)

n(δ) = 1 +
α0c

2ω1

I0

1 + I0

[
T1δ

(T1δ)
2 + (1 + I0)

2

]
, (14b)
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Figure 6. The absorption (in units of α0) seen by the probe beam caused by coherent population
oscillations found by plotting equation (14a).
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Figure 7. The refractive index change (in units of α0λ) seen by the probe beam caused by coherent
population oscillations found by plotting equation (14b).

where I0 = I1/Isat ≡ �2T1T2 is the normalized pump intensity and α0 is the unsaturated
absorption coefficient.

We can plot equations (14a) and (14b) under general conditions to find how the absorption
coefficient and refractive index change with pump power. In figure 6 we can see both the power-
broadened spectral hole caused by coherent population oscillations and the decrease in total
absorption from saturable absorption. These spectral holes correspond to rapid changes in
the refractive index as a function of frequency (figure 7). We can infer from figure 7 that the
dispersion is optimal when the pump intensity is equal to the saturation intensity (I0 = 1).
However, further analysis is necessary to verify this.
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To find the group index we can rewrite equation (4) to get

ng = n(δ) + ω1
dn

dδ
. (15)

This equation describes the propagation of spectrally narrowband pulses centred at the
pump frequency ω1. For broadband pulses, higher-order dispersion effects need to be
taken into account [44]. Some of our experimental results were obtained through the use
of modulation techniques such that the optical field contained only a carrier wave (to act
as the pump that creates the hole) and two sidebands (to act as probes). Since this field
contains discrete frequencies rather than a continuum of frequencies, a generalized form of
equation (15) describing the propagation of the modulation pattern through the material is
given by nmod

g = n1 + ω1[n(δ) − n(−δ)]/2δ, where n1 is the refractive index experienced by
the pump. Combining this with equation (14b), we obtain

nmod
g = n1 +

α0cT1

2

I0

1 + I0

[
1

(1 + I0)
2 + (T1δ)

2

]
. (16)

For off-resonance modulations (δ � 1/T1), the modulation index reduces to nmod
g ≈ n1. Close

to resonance, the expected fractional delay of the modulation as the beam propagates a distance
L is

ϕmod 
 α0 LT1

4π

I0

1 + I0

[
δ

(1 + I0)
2 + (T1δ)

2

]
. (17)

If we take the derivative of equation (17) with respect to δ and set it equal to zero, we find that
the modulation frequency which has the largest fractional delay is δmax = β = (1 + I0)/T1.
Putting this result back into equation (17),we find that for a given pump intensity, the maximum
possible fractional delay is

ϕmod = α0 L

8π

I0

(1 + I0)2
. (18)

Again we can find for what values of I0 this expression is maximum. As anticipated from
figure 7, we find that ϕmod is largest when I0 = 1. Therefore, the largest possible fractional
delay due to coherent population oscillations is

ϕmod
max = α0 L

32π
. (19)

However, I0 depends on propagation distance because of pump absorption. As a result, the
optimal input intensity is somewhat above the saturation intensity. In addition, the modulation
frequency where the largest effect occurs (δmax) also changes with propagation distance.

Similarly, we can define a relative modulation attenuation (A(δ)) as the difference between
the attenuation of the modulation intensity and the attenuation of the pump intensity [39, 42]
or

A(δ) ≡ ln

[
I0(L)

I0(0)

]
− ln

[
Imod(L)

Imod(0)

]
. (20)

To find A(δ), we know from equation (14a) that the modulation intensity satisfies the equation

d Imod(z)

dz
= − α0

1 + I0

[
1 − I0(1 + I0)

(1 + I0)2 + (T1δ)2

]
Imod(z). (21)

Likewise, the pump intensity satisfies the equation

d I0

dz
= − α0

1 + I0
I0. (22)
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Combining equation (22) with (21) we get

d Imod

Imod
= d I0

I0
− (1 + I0) d I0

(1 + I0)2 + (T1δ)2
, (23)

which can be exactly integrated to give

ln

[
Imod(L)

Imod(0)

]
= ln

[
I0(L)

I0(0)

]
− 1

2
ln

[
(1 + I0(L))2 + (T1δ)

2

(1 + I0(0))2 + (T1δ)
2

]
. (24)

Therefore, the relative modulation attenuation is

A(δ) = 1

2
ln

[
(1 + I0(L))2 + (T1δ)

2

(1 + I0(0))2 + (T1δ)
2

]
. (25)

We use equations (16) and (25) in the next few sections to model the results of our experiments
with ruby and alexandrite.

Up to this point, we have been treating the issue of coherent population oscillations
purely in the frequency domain. However, it is useful to consider the time domain in order to
understanding the delay that a pulse may experience. Consider a strong pulse that is incident
on a saturable absorber. The leading edge of the pulse will experience absorption and saturate
the material. Consequently, the back of the pulse will see reduced absorption with the net
result being that the reshaped pulse is shifted backwards in time. Therefore, slow light due to
coherent population oscillations may be equivalent to the Basov effect [45].

2. Slow light in ruby

We can utilize the results of the previous section to explicitly consider the effects of coherent
population oscillations in ruby. In essence, we have repeated the work of Hillman et al [42],
but have extended their work to include the time domain.

Our experimental setup is shown in figure 8. We used a single-line argon-ion laser
operating at 514.5 nm as the laser source. The beam passed first through a variable attenuator
and then an electro-optic modulator. The modulator was driven by a function generator which
allowed us to either place a 6% sinusoidal amplitude modulation on the beam or produce long
(∼ms) pulses with almost no background intensity. For all pulse lengths, these pulses had a
peak power of 0.28 W with a background that was less than 4% of that of the peak. A glass
slide sent 5% of the beam to one detector for reference. The beam was then focused with a
40 cm focal length lens to a beam waist of 84 µm near the front surface of a 7.25 cm long
ruby rod. Because the centre of the beam experienced less absorption than the edges due to
saturation, the beam did not expand significantly in traversing the ruby. Ruby is a uniaxial
crystal, and we rotated the rod to maximize the interaction. The beam exiting the ruby was
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Figure 9. The relative modulation attenuation A(δ) with respect to the pump as a function of
modulation frequency for input pump powers of 0.1 and 0.25 W. The solid curves represent the
theoretical model of equation (25).

incident on a detector, and the detected signal was stored along with that of the input beam
on a digital oscilloscope. The resulting traces were compared on a computer to calculate the
relative delay and amplitude of the two signals.

To model the total group delay and modulation attenuation observed in our experiments,
we first numerically calculated the value of I0 throughout the length of the crystal. As discussed
in the last section, the pump beam intensity depends on the propagation distance through the
ruby as

d I0(z)

dz
= − α0

1 + I0
I0. (26)

Using the accepted value of 1.5 kW cm−2 [46] for the saturation intensity of ruby at 514.5 nm,
we integrated equation (26) numerically to find I0(z). Combining this function with our
theoretical model for the dispersion (equations (16) and (25)), we could fit the total delay and
the relative modulation attenuation measured in our experiment. We assumed α0 and T1 to be
free parameters and found the values of α0 = 1.17 cm−1 and T1 = 4.45 ms. These values are
in the range found by Cronemeyer [47] and others. The total transmission in our experiments
was on the order of 0.1%.

In figure 9, we show the measured relative modulation attenuation and compare it with the
numerical solution of equation (25). In the limit in which the pump field becomes very weak,
the spectral hole has a width of 1/(T12π) or about 35.8 Hz (HWHM). As the input power is
increased, the hole experiences power broadening. This result is in good agreement with the
characteristics of the spectral hole that Hillman et al [42] found in a 1 cm ruby crystal.

This spectral dip causes an amplitude modulated beam to experience a large group index.
We show the delay experienced by the modulation in figure 10 for input pump powers of 0.1
and 0.25 W. We observed the largest delay, 1.26 ± 0.01 ms, with an input pump power of
0.25 W, which corresponds in figure 9 to the power where the spectral hole is deepest but still
very narrow. The inferred group velocity at this power is 57.5 ± 0.5 m s−1. Note that the
group velocity can be controlled by changing the modulation frequency or the input intensity.
We found the nature of the effect to be strongly intensity dependent in that by moving the ruby
crystal a small distance from the focus we could greatly decrease the measured delay. As a
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check of the results, we found that the time delay would completely disappear if we moved the
ruby crystal far from the focus. Note that the modulation frequency with the largest fractional
delay was 1/(πT1) ∼ 60 Hz as we would expect. Also, the fractional delay at this frequency
(3.7%) was comparable to what we would expect from equation (19).

Moreover, we have found that it was not necessary to apply separate pump and probe
waves to the ruby crystal in order to observe slow light effects. A single intense pulse of light
was able to provide the saturation required to modify the group index to provide slow light
propagation. These relatively intense pulses can be thought of as producing their own pump
field and are thus self-delayed. We know of no other examples where a separate pump beam is
not required for generating ultra-slow light. For this experiment, we used the programmable
pulse generator to produce Gaussian pulses with a 1/e intensity full width of 1–30 ms with
almost no background, and we observed how they were delayed in propagating through the
ruby. We found that the longer pulses also had the longer delays with the centre of mass
of a 30 ms pulse delayed by 0.71 ms with little pulse distortion. We show this result and
those for other pulse lengths in figure 11. While the theory developed in the last section,
which assumed the presence of distinct CW pump and probe fields, does not model this pulsed
experiment directly, that theory can be used to gain some intuition regarding the experiment.
For instance, we would expect longer pulses, which contain lower frequency components,
to experience longer delays. In addition, very short pulses with high frequency components
would be expected to travel through the ruby with very little delay. As can be seen in figure 11,
this insight is correct.

3. Fast light in alexandrite

Whereas a spectral hole from coherent population oscillations in a homogeneously broadened
absorption line can cause slow light, an ‘anti-hole’ should cause fast light. Such an anti-hole
with a measured width of 612 Hz was observed by Malcuit et al in alexandrite at 457 nm [48].
This ‘anti-hole’ forms instead of a hole since alexandrite is inversely saturable from roughly



Topical Review R1333

30 ms

0 10 20 30-20 -10

Time (ms)

Norm
aliz

ed In
tensit

y

20 ms

10 ms

5 ms

102 m/s

119 m/s

159 m/s

300 m/s

Output Pulse

Input Pulse
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450 to 510 nm due to excited state absorption [49]. However an anti-hole is not the only feature
that can be seen within that wavelength range. Alexandrite is formed by doping a BeAl2O4

crystal with Cr3+ ions, and these ions replace the Al3+ ions [50]. However, not all of the ion
sites are identical. Namely, 78% of the sites occupied by the Cr3+ ions have mirror symmetry
(Cs), and the rest have inversion symmetry (Ci) [51]. As a result, the ground-state absorption
cross sections σ1, population relaxation times T1, and the saturation intensities Is ≡ h̄ω

σ1T1
are

different at each site (see figure 12). Ions at mirror sites have a relaxation time of 290 µs,
and ions at inversion sites have a relaxation time of ∼50 ms [51]. The measurements suggest
that the mirror-site ions have a large excited-state absorption cross section σ2, whereas the
inversion-site ions experience negligible excited-state absorption. We reached this conclusion
because the width of the anti-hole (which is a consequence of excited-state absorption) is the
inverse of 290 µs, whereas the width of the spectral hole (which does not involve excited-state
absorption) is approximately the inverse of 50 ms. The relative size of the hole or anti-hole
depends on the absorption cross sections for each site at a given wavelength.

The setup for this experiment was nearly identical to what is shown in figure 8. However
this time we operated the argon-ion laser at either 457, 476, or 488 nm. Also, the beam
was focused with a 20 cm focal length lens and the alexandrite crystal was 4.0 cm long.
The orientation of the crystal was such that the light was polarized parallel to the a axis.
The transmitted beam went through an interference filter to remove any signal caused by the
fluorescence from electrons decaying from 2E to the ground state and then fell onto a detector.
The detected signal was stored along with that of the reference beam on a digital oscilloscope,
and the resulting traces were compared on a computer to calculate the relative delay and
amplitude of the two signals.

To model our results, we considered the influence of ions at both the inversion sites and
the mirror sites. In addition, the absorption cross sections should be different at different
wavelengths. For a given wavelength and a given ion site, we can refer to equations (14) to
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find the refractive index and probe beam absorption as functions of the probe beam detuning δ,

n(δ) = 1 +
α0c

2ω1

I0

1 + I0

[
δT1

(T1δ)
2 + (1 + I0)

2

]
,

α(δ) = α0

1 + I0

[
1 − I0 (1 + I0)

(T1δ)
2 + (1 + I0)

2

]
.

Since the mirror-site ions experience excited-state absorption, we can replace the unsaturated
absorption coefficient α0 for these sites with N(σ1 − σ2), where N is the ion density. Also,
we assume that the inversion-site ions experience negligible excited-state absorption and have
a different saturation intensity than mirror-site ions. Now we can modify equations (14) by
including a term from both the mirror sites and the inversion sites to get

n(δ) = 1 +
Nc

2ω1

[
ρm(σ1,m − σ2,m)

I0,m

1 + I0,m

(
T1,mδ(

T1,mδ
)2

+
(
1 + I0,m

)2

)

+ ρiσ1,i
I0,i

1 + I0,i

(
T1,iδ(

T1,iδ
)2

+
(
1 + I0,i

)2

)]
, (27)

α(δ) = ρm N(σ1,m − σ2,m)

1 + I0,m

[
1 − I0,m(1 + I0,m)(

T1,mδ
)2

+
(
1 + I0,m

)2

]
+ ρm Nσ2,m

+
ρi Nσ1,i

1 + I0,i

[
1 − I0,i (1 + I0,i )(

T1,iδ
)2

+
(
1 + I0,i

)2

]
, (28)

where the subscripts m or i indicate the parameter for the mirror or inversion sites and ρ is the
percentage of ions at a given site. As we did for ruby, we calculated numerically the intensity
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Figure 13. (a) The relative modulation attenuation and (b) the delay found in a 4 cm alexandrite
crystal at a wavelength of 457 nm with a pump power of 320 mW. The observed negative time delay
corresponds to superluminal propagation. The solid curves indicate the results of the theoretical
model.

throughout the crystal and used these equations to find the expected delay and attenuation of the
modulated signal. We found the best fit for the data using the parameters N = 9 × 1019 cm−3,
T1,m = 280 µs, and T1,i = 19 ms. We give the absorption cross sections that we used for each
wavelength below. All of these parameters are within the range of accepted values [49, 51].
This work has been published in Science [52].

We independently measured the probe absorption and modulation delay as functions
of frequency, and then displayed both of them to demonstrate the self-consistency of the
experimental data. These results are summarized in figures 13–15. In figure 13, we show
the relative modulation attenuation (as defined in section 2) and the modulation delay for a
pump power of 320 mW at a wavelength of 457 nm. This is the original wavelength used by
Malcuit et al [48]. At this wavelength, the absorption is almost completely dominated by the
mirror sites. As a result, the modulation attenuation that we saw is comparable to what was
observed by Malcuit et al. However, there is possibly some small influence of the inversion
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Figure 14. (a) The relative modulation attenuation and (b) the delay found in a 4 cm alexandrite
crystal at a wavelength of 476 nm with a pump power of 250 and 410 mW. The solid curve indicates
the results of the theoretical model. The inset in (b) shows the normalized output signal at 800 Hz
leading the input signal by 23.8 µs.

sites observable primarily in the negative delay almost going to zero. In the modelling of
these results, we used the values σ1,i = 0.1 × 10−20 cm2, σ1,m = 2.8 × 10−20 cm2, and
σ2,m = 4.9 × 10−20 cm2. We noted that the beam transmission at this wavelength was small
(<0.1%), which motivated us to look at the other laser lines of the argon-ion laser.

In figure 14, we again show the relative modulation attenuation and the accompanying
delay, only this time at 476 nm and at two different pump power levels. At this wavelength,
the inversion sites play a much larger role, and their influence is observable both in the small
narrow dip in the relative modulation attenuation and in the corresponding positive delay at
low modulation frequencies. This effect is in good agreement with the work of Schepler [53],
who found that the inversion site contribution to the fluorescence intensity becomes significant
from about 470–520 nm. We observed an advancement of the waveform as large as 50 µs,
which corresponds to a group velocity of −800 m s−1 and a group index of −3.75 × 105. The
measured transmission was about 3.5%. In the modelling of these results, we used the values
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Figure 15. (a) The relative modulation attenuation and (b) the delay found in a 4 cm alexandrite
crystal at a wavelength of 488 nm with a pump power of 250 and 500 mW. The solid curve indicates
the results of the theoretical model. Note that ultra-slow propagation occurs for low modulation
frequencies (<60 Hz), and that superluminal propagation occurs at higher frequencies. The inset
in (b) is a close-up of the same data.

σ1,i = 0.35×10−20 cm2, σ1,m = 0.9×10−20 cm2, and σ2,m = 4.05×10−20 cm2. Using these
numbers we found reasonably good agreement with the experimental data.

Finally, in figure 15 we show the same data at a wavelength of 488 nm. At this wavelength
the effect of the inversion sites dominates, and produces a very narrow dip in the absorption
at low frequencies. The peak in the delay shown in figure 15 corresponds to an average group
velocity of 148 m s−1, but we also observed group velocities as low as 91 m s−1 with a higher
pump power (950 mW). The transmission at this wavelength was more than 10%. As can be
seen from the inset in figure 15(b), we have excellent agreement with our numerical model at
this wavelength using the parameters σ1,i = 0.4 × 10−20 cm2, σ1,m = 0.9 × 10−20 cm2, and
σ2,m = 3.5 × 10−20 cm2.

These experiments show that it is possible to advance an amplitude modulated signal. We
found that is was also possible to advance a pulse. To do this, we adjusted the electro-optic
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Figure 16. The input (black) and output (grey) signal for a 1 ms pulse at 476 nm. The output is
advanced by 43 µs.

modulator to produce a pulse on a CW beam. The average power was 330 mW and the pulse
had a peak that was 16% of the background power. The laser was tuned to the 476 nm line
because the largest advancement was observed at that wavelength. We found that the centre
of mass of a 1 ms pulse could be advanced as much as 43 µs with very little distortion (see
figure 16).

In conclusion, we have demonstrated that either ultra-slow or superluminal light
propagation can be achieved in the same solid-state material by changing the excitation
wavelength. This phenomenon occurs as a result of coherent population oscillations between
the ground and excited states in an alexandrite crystal. We find that we have to take account
of the different absorption characteristics of Cr3+ ions in mirror or inversion sites to interpret
our results.

4. Significance of ultra-slow light—all-optical signal processing

All-optical signal processing has the potential to revolutionize optical communication systems.
For example, the cost and power consumption of the intermediate electronic elements in optical
routers and hubs could be eliminated in an all-optical system. As a result, these systems can
have a larger bandwidth and signal capacity than current systems.

The key element in any all-optical system is a component that will produce a tunable optical
delay to allow for data buffering. Various techniques have been previously presented to create
optical delay lines including fibre delay lines, Bragg gratings, and free-space optics [54, 55].
The major limitations of these techniques include the inability to control the delay, the limited
optical tuning range (if any), and the lack of repeatability. Optical buffers have previously
been demonstrated using a fibre loop, optical bistability [56], and accumulated echo, for use
in short-term data storage. However, a slow-light-based optical buffer will allow the creation
of a smart, flexible buffer with controllable delay and therefore controllable storage time.
This increased flexibility will allow the buffer to be dynamically optimized for a given optical
network and will result in reduced packet loss rates and increased throughput and traffic load
capabilities.
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EIT and CPO are the principal techniques that have been demonstrated for realizing
controllable ‘slow light’ and increasing the strength of nonlinear optical interactions, a
promising path for addressing both of the critical issues discussed above. Slowing the group
velocity of pulses will allow for delay lines with shorter physical length, and increasing the
size of the nonlinear optical interaction will allow for smaller all-optical processing elements.
Such advances will bring key functional elements down to the chip scale and allow a new
generation of dense photonic integration platforms to be realized.

5. Summary and conclusions

In this review, we first described the concept of coherent population oscillations—the primary
physical mechanism we used to generate large dispersion. We showed that when the beat
frequency between the pump and probe beams is slow enough, it will cause the population in
a two-level atom to oscillate. This time-varying population will cause energy to be scattered
out of the pump beam and into the probe. As a result, the probe will see less absorption over a
narrow frequency range. Correspondingly, the group velocity for the probe can be very large
within the same frequency range. From our investigations, it is clear that coherent population
oscillations are possible in a wide variety of systems.

We described our experimental demonstration of ultra-slow light propagation in ruby using
coherent population oscillations. We observed a group velocity as low as 58 m s−1, which is
a comparable group velocity to what is observed using much more difficult EIT techniques.
Our results included the observation of a delay of both amplitude modulations and pulses.
Therefore, our method is validated as an important new way to generate ultra-slow group
velocities.

We further extended the investigation of coherent population oscillations to a different
material. In alexandrite, we showed how it is possible to observe both ultra-slow and
superluminal group velocities. Since alexandrite is an inverse saturable absorber at certain
wavelengths, the sign of the group velocity is changed. In addition, alexandrite has a slightly
more complicated structure than ruby in that the chromium ions can occupy two different types
of lattice sites within the crystal. These two types of sites are known as mirror sites (having
mirror symmetry) and inversion sites (having inversion symmetry). Due to the energy level
structure at each site, ions at mirror sites experience inverse-saturable absorption (fast light),
whereas ions at inversion sites experience saturable absorption (slow light). The competing
effects from ions at either site can be easily distinguished because they have markedly different
population relaxation times.

Finally, we discussed the significance of ultra-slow light propagation. While much work
remains to be done, we conclude that these slow light techniques could be very important in
developing all-optical control of communication and storage applications.
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